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INTRODUCTION

Several authors have developed and used variational principles to

obtain solutions to problems in quasi-static and dynamic viscoelasticity,

with and without thermomechanical coupling. Gurtin [1] and Leitman [2]

have developed variational principles for viscoelastic media without ther-

momechanical coupling. T'hey have used the convolution form of the consti-

tutive equations and have developed variational principles for several

types of boundary value problems. Their work appears to be primarily of

mathematical interest. Valanis [3] has developed a principle applicable

to viscoelastic materials with constant Poisson's ratio, without thermo-

mechanical coupling.

Schapery [6,7] has studied wave propagation in viscoelastic media

with thermomechanical coupling. In [7] he has used a complex modulus form

of the constitutive equations and has developed a variational principle

analogous to Reissner's complementary principle using complex kinetic and
potential "energy" functions. His principle, however, involves both stress

and displacement functions which must already satisfy the equations of mo-

tion. ie has considered examples with bodies that are either massless or

with concentrated mass, and in his last example of a 'solid cylinder with

distributed mass' he only gives a first approximation to the solution,

using only one term of a series expansion. While his method appears promis-

ing, the question of convergence to the exact solution, or, in other words,

how many terms 'n the series are necessary to get a sufficiently close

approximation to the exact solution, remains open.

Numbers in square brackets designate references at the end of this
report.
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This report is concerned with the application of variational prin-

ciples to problems of steady state wave propagation in viscoelastic media

with thermomechanical coupling. A complex modulus description of the

constitutive equations is used. The material is assumed to be thermorheo-

lo..ically simple r51 and the energy equation, as suggested by Schapery

171. uses the cycle averaged temperature dlisttibution with the cycle

averaged value of the Rayleigh dissipation function acting as the heat

source. The displacement variational principle suggested here involves

only the complex displacement function and an admissible set of dis-

placement functions need only satisfy any prescribed displacement boundary

co:.;ti,:; -,IL mlg;. exist. This principle can be considered to be an

extension of that developed by Kohn, Krumhansl and Leo [4) for elastic

media. It uses complex instead of real "energy" functions. The tem-

perature variational principle is the one suggested by Biot [8] and

Schapery F71.

An alternative form of these principles is stggested. This proves

more useful for certain applications. These principles are set up for

general three-dimensional problems and are later specialized to the

cases of two and one dimension.

As an example, the problem of steady satte longitudinal waves in a

viscoelastic rod with thermal coupling subjected to a sinusoidal stress

applied at one end, is solved using a variaLtional approach. fluang ant

Lee 19, solved thLis problem including time as an independent variable.

This resulted in partial difFerential equations which were solved

numerically using a method of finite differences. This is useful if

the time histories of the stress and temperature have to be determined.
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For most engineering design applications, however, the steady state

values of stress and temperature are of primary interest, since due to

dissipation of mechanical energy the temperature increases until a steady

state is reached, if in fact the situation is stable. Such a steady

state yields the most severe temperature conditions which are the major

concern in design. In such cases it is simpler and far more efficient

to obtain the steady state values directly instead of following t!,e com-

plete time history of the process till a steady state is reached. In

this example, the steady state values of stress and temperature have

been directly obtained by using a Rayleigh-Ritz procedure on the alter-

native form of the variational principles. Functions for displacement

(complex) and temperature are assumed as polynomial series (for con-

venience) with 'n" and "Im" terms respectively, with unknown coefficients.

Simultaneous extremization of two functionals is carried out by solving

the resultant nonlinear algebraic equations in a computer. The number

of terms "n" and "im" can be set in the program. Calculations for a

Lockheed solid propellant [9] are carried out for various values for V

"n" and "Im" and the question of rapidity of convergence to the solution

given in [9] is discussed.

GOVERNING DIFFERENTIAL EQUATIONS

1. General Equations in Three Dimensions

Let us consider the governing differential equations for stresses,

displacements and temperature in steady state oscillations of linear

isotropic viscoelastic media. The thermomechanical couplinS is caused

by the cycle averaged value of the mechanical dissipation function acting

"A""I--' -- ' -' - -. ..... "_ ... .. -_,,__ _____'••
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as the heat source itA . energy equation and by the fact that the com-

plex viscoelastic modulii are temperature dependent. As pointed out by

Schapery [6,7] the coupling terms due to the dilatation and potential

ener;.y drop out of the energy equation if it is integrated over a cycle.

• assu-ne steady stau3- conditions where the mechanical variables

are E.. ;,,onic funcA.Aonr of time, and the temperature, after a sufficiently

long :'ine, ib i.s dee nt of time. Strictly speaking, the temperature is

never truly timrn ii.Jependent but has small cyclic variations about a mean

value as a result of the cyclic variations of the potential energy, j

dilatation and dissipation (see [9]). These small fluctuations, however,

will be neg!ected and henceforth the temperature will mean its cycle

averaged steady state value.

Let the stress and strain tensors and the displacement vector be

defined as the real parts of

- iwt 2a a e
ij ij

u -u e
where i = u, u i e

where i ffiV-, W is the frequency (real) and t is time. The

complex quantities a e and ui are used most of the time in

further calculations and will be referred to as simply stress, strain

and displacement respectively. The familiar cartesian tensor notation

is used here. The suffixes i and j range from I to 3 and a repeated

index implies summation over that index.

"S The equations of motion are
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+ w2 u =0 (2)

where P is the mass density (assurted constant).

The constitutive equations. ising the familiar complex modulus

formulation, are

*,
a = u + *u + u )(3)

iji k,k 6ij + i', (u uj,i

. Jo
where X and p are complex Lame parameters which are functions of

temperature, and 6ij is the Kronicker delta. j

Equation (3) is entirely analogous to the constitutive equations
4

for elastic solids and is obtained directly by the use of the well

known correspondence principle [12].

We note that Eqs. (3) should contain a term due to thermal expan-

sion. However, as pointed out by Schapery in [7], in our problem each

of the mechanical variables can be separated into two parts: (a) that

due to applied cyclic loading in the absence of thermal expansion, and

(b) that due to thermal expansion with homogeneous mechanical boundary

conditions and a temperature distribution obtained from the components

of (a). Here we are only concerned with the former components and the

latter can be obtained from standard thermoelastic analysis.

The Lame parameters are related to the more commonly used complex

shear and bulk compliances J and B* by the relations

* I.
p=--

J

(4)
2 2

B 3J
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Typically, in polymers, J is a very strong nonlinear function

of temperature while B is a relatively weak function of temperature.

In thermorheologically simple materials it is assumed that J is

a function of only the reduced frequency WO which is related to the

actual frequency w through the temperature dependent shift factor

aT (see [7]), i.e.

W' = aTCT) (5)4

where aT represents the effect of temperature on viscosity.

Combining Eqs. (2) and (3) one can write the equations of motion in

terms of displacement alone

S(t* Uk+k),i + (ui - 0 (6)

The steady state energy equation for the cycle averaged temperature

distribution is given by V

KT =-2D (7)

where T is the temperature, K is the thermal conductivity (assumed

constant) and D is the cycle averaged value of the Rayleigh dissipa-

tion function given by

t+LTr

DRe(a) Re=t1)3 dt' 5

where Re denotes the real part of the complex argument. 2D is the

cycle averaged value of the mechanical dissipation.

Using Eqs. (1), (3) and (7) and after carrying out the necessary

:1"
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integration, we have

D 12IAL + 21I 121 (8)
4 L21'kk 21121'i

where

X = x+12

and p, are the storage Lame' parameters and X2 12 the loss

parameters,

ek f kk Jj

I e ij

and "-" denotes the complex conjugate.

Note that as defined D is a real functlun of the strain tensor

and the loss parameters X2  and P2

Since X and I2 are nonlinear functions of temperature, (7) is

a nonlinear partial differential equation for the temperature. Also, j

the steady state temperature is purely a spatial function independent

of time.

Using the familiar kinematic relations

= (u + u (9)oij =(i,j uJ,i)

we can write Eq. (7) in terms of displacement and temperature

K T,ii ++LX2 U + u ) (10)L2uk ' + 112(ui,j ui~j +u,j uji~j= (0

Equations (6) and (10) are a complete set of four nonlinear partial

--.
' -' - -~- --- - - - - - - - - - - - - -- - - - - - - - - - - - - -
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differential equations for the four unknowns ui (i=1,3) and T

Since these are written in terms of displacements, the compatibility

conditions are automaticallv satisfied.

For the boundery conditions we assume that the displacement vector

is prescribed on a part of the aurface Au , while the traction vector

is prescribed on the remainder A. . Also, the temperature is pre-

scribed on the portion of the surface AT and the heat flux (per unit

area) is prescribed on the remaining surface AH.

2. Equations in Two-Dimensional Polar Coordinates

It is instructive to look at the form of the general equations for

the case of plane strain in polar coordinates. These equations and

the associated variational principles to be discussed later are useful

for problems involving long circular cylinders in plane strain.

The equations of motion now take the well known form

br 1 •r8 9 r" e 2 :
A+. 2  r+. + + U =0

~r rr r

I aOe _ •r8 20r8 x2()G ?) r + -a_ +- +P 2u+0

while the constitutive euqations become

r= X*(r ror ~+ e) + 2P r •

AI

where a a 0 ' Cr are the stress components, 6 , • r ther r r r
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strain components and ur u0  the displacement components in polar

(r,e) coordinates.

The strains and displacements are related by the familiar kinematic -

equations

C r
r Or

1 +Ue Ur (13)

Sir

11 e _u U I
're 2L +d

The energy equation (Eq. (7)) takes the form

2 V T2- (14)

where

b2 l 1 2
r2 B 02

orr
S' • +•8 •8)+ •2• 8+ € r

= L(2 22)(er er + ++

+ 4 reir
2 0r9  

A

This can easily be shown by using the fact that rkk 12 and

I<j12 are invariant under the transformation of coordinates and

become

iekk -1 > (er + e9)(' r + C8)

e iJI2 C ir + Cr ea + 2crB Cr9
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VARIATIONAL PRINCIPLES

1. Variational Principles in Three Dimensions

The field equations (6) and (10) for the coupled thermomechanical

problem together with the boundary conditions are equivalent to two

variational principles.

The variational principle for the equations of motion and the con-

stitutive equations (2) and (3) can be stated as: of all displacement

functions ui satisfying prescribed displacements ui on Au , the

displacement function satisfying the equations of motion (2), the

constitutive equations (3) and the traction boundary condition on Aa

is determined by

& f (Uv - Kv) dV - f u &,j nj dAj 0 (15)iI
where U and K are analogous to the elastic strain energy densitySV V

* and kinetic energy density and are given by
k**

U (uv k,k)2 + "1(uij)(uij + uji)

KV =1 i P2 u u

oGj nj = prescribed traction on A.

nj - direction cosines of the outward unit normal to the surface A.

6 means that the variations must be taken with respect to the dis-
u

placement function only.



If the kinematic equations (10) are also satisfied (i.e., we define

strain functions to satisfy Eq. (10)), we can write

u *Le 2 *v 2 (ekk) + ei J

This variational principle is analogous to Hamilton's principle in

dynamic elasticity.

Comparing Eq. (15) with the variational principle given by Schapery

in [7] we see that here we can choose trial functions for the displace-

ment which need only satisfy the displacement boundary conditions of

the problem whereas in [7] Schapery must choose displacement and stress

functions which must already satisfy the equations of motion. The

latter principle thus appears more restrictive and would be more dif-

ficult to apply in complicated problems.

The variational principle can be proved by carrying out variations

with respect to the function ui to yield

" f {(* Ukk),i + (t* uij)j + (I* uji),j + P W2 uj} 8 ui dV

+ fh X uk'k 6i + P (ui'j + uj'i) - YiJJ' nj 6 ui dA 0 (16)

Aa

In view of the arbitrariness of 8 ui , this expression equals zero

only if the equations of motion (2), the constitutive equations (3),

and the traction boundary conditions on A. are satisfied.

If we restrict the admissible class of displacement functions such

that the boundary conditions for both the displacements on A and

traction on A. (through Eq. (3)) are satisfied, the surface integral
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drops out of Eq. (16) and we are left with a simplified form of the

principle

r .22{, f Ukk)i + u + (* u + W uij u dV = 0
k~)i+ )~ (iiuj~

(17)

Equation (16) (or (17) which is a special case of (16)) can be con- 4

sidered to be an alternative form of the variational principle (15).

Equation (17) can be considered to be a Galerkin formulation of the

problem.

It is useful to compare the relative advantages of the two forms.

Equation (15) uses energy invariants and therefore appears more con-

venient in complicated coordinate systems. However, when carrying out

a Rayleigh-Ritz method of solution, use of Eq. (16) can save a large

amount of calculations since the variations have already been carried

out.

It must be remembered that X and p are temperature dependent

and in order to get the temperature field we require another variational

principle from the energy equation. This can be stated as follows:

of all temperature distributions which satisfy prescribed T on AT ,

the temperature distribution which also satisfies the energy equation

(7) and the heat flow boundary condition on AH is determined by

6 (S SM) dV + ATdA. 0 (18)

where ST is proportional to the entropy production density resulting

from temperature gradients (see [7])
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ST KTi Ti

and SM is the integral of the mechanical dissipation

TI

2 D dT'
SM f

S= prescribed heat flux per unit area out of the body.
I

8 means the variations must be taken with respect to the tempera- 11
T

ture only;

D is as given by Eqs. (7) and (10).

This principle can be proved by taking variations with respect to

T to yield

(2-T 6T dV + (KT, i+f)8T dA=O0 (19)

f fA
V AH

In view of the arbitrariness of &T , this expression is zero

only if the energy equation (10) and the heat flow boundary condition

on A. is satisfied.

If we restrict the admissible class of temperature functions such

that the boundary conditions for both the temperature on A and heat

flow on AH are satisfied, the surface integral drops out of Eq. (19)

and we are left with

f (2D + KTii) 6T dV =0 (20)

iV
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Equation (19) is an alternative form of the variational principle (18).

Equation (18) uses thermodynamic invariants and the comments made ear-

lier about the two forms of the variational principle for the equa-

tions of motion apply here too.

The variational principles for displacement and temperature (Eqs.

(15) and (18)) are entirely equivalent to the field equations (2), (3),

and (10), with their associated boundary conditions. The displacement

and temperature functions can be obtained by simultaneously making the

appropriate integrals stationary with respect to displacement and tem-

perature respectively. The first equation (15) could be regarded as

getting a stationary "cost" function, and the second (18) as a con-

straint, or vice versa.

A Rayleigh-Ritz procedure can be used to obtain the displacement

(and hence the stress components) and temperature distribution. This

is done in a one-dimensional example presented later in the report.

2. Variational Principles in Two-Dimensional Polar Coordinates for

Plane Strain3

The variational principle for displacement (Eq. (15)) takes the

form: of all displacement and strain functions satisfying prescribed

displacements on Au and the kinematic Eqs. (13), the displacement

function satisfying the equations of motion (11), the constitutive

equations (12), and the traction boundary conditions on A. are

given by

rr~~ X 2 * 2 222 2
., (C+ )2 + ll(er + e2+ 220o) pw(u +ue).JdV

S.(A. L(nr r + neo re) ur + O re + no ae) uej dAj = 0 (21)

Nk
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where

n r -T+ no

being the outward normal to A0  and e , • the unit vectors in

the radial and tangential directions.

Equation (21) is obtained from Eq. ý15) by a transformation of

coordinates using the fact that ekk and e •iJ are invariants.

The alternative form of Eq. (21), for the case (for simplicity)

where the normal n = r (i.e. for a circular boundary) is obtained

by taking variations with respect to ur and ue

frb * * 2b * 2* -

"- L • Q , (e + e8) + 211 er) + T 78(• ere) + "-r (rr r )

2 rlb * * b *+ p WUr 6ur + (X(er + e£) + 211 eq) + 2•(1 Cr8)

4L C 6u 8Jf + r~ +211 rd-

+ tip ree + 2 u u ,dV + Af [TX* eu + >+ 2p* ° r- r
6Ur 0

+ &11*p - CY 8e;dA = A0  (22)

where reand#

where &r and Gre are the prescribed traction components on A.•

Thia expression is seen to vanish when the Eqs. (11), (12), and

the traction boundary conditions cn A. are satisfied.

If the normal points inwards (i.e. a-- -er) the sign of the sur-

face integral changes.

Once again, if the trial functions for displacement components are

chosen such that the traction boundary conditions are satisfied on A.

the surface integral vanishes and we have a simpler form of the varia-

tional principle.
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The variational principle for the energy equation (18) becomes

2 2 T
8{I+ 2(T ID dT'l dV + ATdAI=0(23

T K~12 vg)~r AR(3
Tr J J f

where D is given explicitly in Eq. (14).

Its alternative form, obtained as usual by taking variations with

respect to the temperature, for the case i = e is

- (KV2 T + 2D) 8T dV + + K L) 6T dA 0 (24)

V AR
H)

where V2  is as given in Eq. (14).

Once again, as expected, this expression vanishes when the energy

equation (14) and the heat flow boundary condition on AH is satis-

fied. I
AN EXAMPLE IN ONE DIMENSION i

1. The Problem j

The problem of steady state longitudinal waves in a viscoelastic

rod with thermomechanical coupling is now solved using the one dimen-

sional versions of the variational principles presented in the previous

section. A Rayleigh-Ritz procedure is used on the alternative forms

of the variational principles. The same problem, including time

dependence, was solved by Huang and Lee [9] using a finite difference

approach. The results obtained here are compared with some steady 11
state results given in [9]. The question of how convergence to the

solution given in [9] depends on the number of coordinate functions used

is discussed. 7,
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Let us consider a viscoelastic rod of length A insulated on its

lateral surface as shown in Fig. 1. The left end is free while the

right end is vibrated at a frequency w with a constant stress ampli-

tude 110 (real), so that the prescribed stress at this end is

Scos wt . The temperature of the vibrator is assumed constant at

T while a radiation boundary cendition is assumed at x = 0 .

The boundary conditions can therefore be written as

xm0 dT
x c(T T

(25)

•=0

T To

where c = h/K is the ratio of the surface conductance h to the

thermal conductivity K of the viscoelastic material. Note that the

problems of uniform normal or shear traction on the surface of a wide

slab with the stated thermal boundary conditions prescribed on the slab

surface are mathematically equivalent problems. Note also that here
I

we have mixed thermal boundary conditions but this can be taken care

of in the variational principle as shown later.

2. The Field Equations and Variational Principles

The equations of motion (2) and the constitutive equations (3)

reduce to

d *du 2x(- -)+p u=0 (26)

dduS =rI+i 2 * duI
-Ca +i a E (27)

1 2 WZ4
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where E = E1 + i E2  is the complex Young's modulus which is a func-

tion of the temperature through the reduced E.requency (see Eq. (5)).

The steady state energy equation becomes

_dut.
Kd2T + 2 E u = 0 (28)

dx2  2 21dx9

d1 2 d udu-
where, as before, Idx = dxdx

* x

Note that for the one-dimensional strain problem, E must be re-

placed by X+ 2p* and E2  by X2 + 2 2

The corresponding variational principle for displacement becomes: I

4of all possible displacement functions, the one satisfying the equa-

tion of motion (26), the constitutive equation (27) and the stressA

boundary conditions from Eq. (25) is determined from

. dX+ 0 u() =O (29)

If the admissible class of displacement functions is restricted

such that the stress boundary conditions are already satisfied (through

Eq. (27)), the alternative form of the variational principle takes the

simplified form

oI
{ E duT_ ) + P W2 j~ 8u dx C (30)

The temperature variational principle takes the form: of all tem-

perature distributions which satisfy T(A) - To , the temperature dis- A
tribution which also satisfies the energy equation (28) and the
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radiation boundary condition at x - 0 (see Eq. (25)) is determined

from

TT
6 - E(T')dx

0

+ h(ý- T T= 0 (31)

Taking variations and integrating by parts, the alternative form is

obtained as

- L2 T + dx + {(h (T -T) K AT 8 TJ 02 l0 dx2 =

(32)

which is true only if Eq. (28) and the radiation boundary condition at

x - 0 is satisfied.

As before, if the temperature is chosen such that both the tempera-

ture and radiation boundary conditions (at x A . and at x -0) are

already satisfied, the temperature must be determined from

d2T w E2 dl

(K d +- )2Tdx f 0 (33)

dx

Equations (30) and (33) are used in further calculations in this

section. The object is to find the spatial distribution of temperature,

displacement and then stress.

tA
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3. The Properties of the Haterial

A Lockheed solid propellant is an example of a thermorheologically

simple materi'l in which, within a wide reduced frequency range, the

complex shear compliar.ce J = J i can be represented by (see

[91)

J1 = k( (w Y

J 2 =k 2 (w aT) 1l

where

k2 n1 T

Stan~--

n Tn

(aT)n2 =T T-2 TI

and k1 , k2 , n1 , n2 , T1 and Tn2 are constants. The tensile

compliance D= I/E* is related to the shear compliance J and the

bulk compliance B by the equation

D +
* 3 B

and whenever J is greater than B by at least two orders ro magni-

tude, we can write

.
* J

D =DI i D2 •
2 3U

Y

D1 cl w (T - T1) (34)

2 ( c 2 I)
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where c 2 , 2 , y are constants. I
E and E, are now obtained from above as

4I It
E1

1 2 2

(35)
D2E'2 = T7W

2 D 2 + D 2
1 ? 2

4. Method of Solution

The Rayleigh-Ritz procedure [11] is now used to obtain approximate

solutions for the temperature and displacement (and then stress) func-

tions from the variational equations (30) and (33).

The following dimensionless quantities are used

T - Tl

qT T 1 ,T ct (36)

Equations (30) amd (33) are nonlinear and it is not possible to I
choose an orthogonal set of coordinate functions for the displacement

and temperature. For convenience, it is assumed that the displacement

and temperature distributions can be approximated by a linear combina-

tion of polynomials with coefficients to be determined. Thece func-

tions are chosen such that they satisfy the boundary conditions (Eq.

(25)) for all choices of these unknown coefficients. Also, the number

of terms in the series are parameters which can be set in the result-

"ing algebraic equations for the coefficients. This enables comparison

of successive approximations with the solution in [9] and thus an esti-

mate of the degree of accuracy as a function of the number of terms

taken is obtained.



The non-dimensional ' mperature is written as

m

¶(q) "l+(I - q) {b 0 + e b 0 qq 2  bi(l" q)i- 2j (37)

i=2

where e 3W , m is a parameter and b0 , b2 b 3 ... b are

m real constants that are to be determined ( m < 2 implies

m 0).

It is easily seen thqt

d = bo(eI- 1) = b0= ( q0

and

q=l

which means that the thermal boundary conditions from Eq. (25) are

satisfied in terms of the non-dimensional variables defined in Eq. (36).

The complex strain is written as

n
du

C 1 + i 2  dx= q ai(l q) (38)
i=O

where

0. a0R + i a0 fI D* (c i c T T•
~=aR i~u I 00= ,(. T) B

O0qm 0 i c 2 )cr(TO- T12 0 0

n is a parameter and al ,a 2 ,a 3 ... an are n complex constants

that are to be determined.
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As before, it is obvious that with this choice of strain

01O S 0 al E I aO 0 0

so that the stress boundary conditions from Eq. (25) are satisfied.

Writing ak ak + i ak (k - 1,n) this choice of functions leads

to (2n + m) real unknowns which must be determined from an equal num-

ber of algebraic equations.

These nonlinear algebraic equations are now determined from the -I

variational equations (30) and (33), Substituting the displacement

and temperature expressions into Eq. (30), carrying out the necessary

integrations and equating the coefficients of 8 a (j n) to

zero gives

for j 1,2,3,...n

n

+-- dt[f(j,k) - f(j,k+l)1

-(i+') (J+!2)(J+
3) + k0k -0

k3 (I~ -a139

-0+ a ao1• - J ( -
21k+j+l + k+j•+2) 

(

and equating the coefficients of 6 a8I (j =,n) to zero gives

for j = i,2,3,...n

n

I.a d~f(j,k) - f(j,k+l)1

k-O

,n IR 
R I

(ak a0 - a k a0) (I~ -
2 kJ+l + Ij+)=0(40)

k=l 
J ~ ~ L+kJ2
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where I ( p an integer) is a nonlinear function of el ,b

b 2 ,b 3 , .. , b defined as

I Q.(I- q)p d

0 2 -21l
S+ (1 q)b0+el b q+q + q)

i=2

f(j,k) is a function of integers

k(k+J+4) + (k+2)(J+3)
f(J ,k)= i

(J+2)(J+3) (k+l) (k+2) (k+J+3) (k+J+4)

d is a non-dimensional parameter _

2° 2
d P 2aA

0

and

a012 (aR)2 (a,)

Note that Eq. (30) requires the displacement u in addition to

the strain. Integration of Eq. (38) leads to an extra constant, say

co ,but also an extra equation obtained by equating the coefficient

of 0c to zero. This extra constant co has been eliminated from

Eqs. (39) and (40) given above.

Next, substituting the displacement and temperature expressions into.'

Eq. (33) and equating the coefficient of 8 b0  to zero gives

(3+e,) el b0  _m n R R I I
Sbk(Sk- 2 k + 8k+l) + V Lk a, + a )X

k-2 i ,k-0

{(l+el)Ii+k+l -(2 + ) Ii+k+2+ (1 + 3el) -i+•3- e, .+ , 0 (41)
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and equating the coefficients of 8 bj (j 2,m) to zero

gives

for j - 2,3,4...m

4e1 bo
i(J+l)(J+2) " k., bk[h(J,k'l) - 2h(jk) + h(j,k+l)]

k-2

n

i,- (a k a i + ak a,) {i+j+k4-I 41 i+j+k + 61 i+j+k+li, k=0

" 4Ii+j+k+2 + Ii+j+k+3 0 (42)

where gk and h(J,k) are given by

(k+14-e) (k-i)

gk (k+)'-

h(j~k) 2k(k-l)
(k+J) (k+j- 1) (k+j- 2)

V is the non-dimensional parameter

-12 c(T(, -lIy-l wl-0.22 c2T0 - .1 w
V - c2 + 2 2

and Ip has been defined before in Eq. (40).
Equations (39), (40), (41), and (42) constitute a set of (2n4hn)

nonlinear algebraic equations for the (2n4m) unknowns R (k - 1,n)
I a

a•k (k a l,n) , b0 and bk (k - 2 ,m)
The integral Ip given in Eq. (40) can be approximately evaluated

by expanding the denominator in a binomial series retaining only linear
terms and carrying out the integration.
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For example, for m = 5 , we get

6
Ipy- k ,(

k=O

where

W 1 -(e 1 - 1) b0

w2 f-(b2 +b3 + b4+ b5 7 el b0 )

w3 = (b12+ 2b3 + 3b4 + 4b5)

w4 =-(b3 + 3b4 + 6b 5)

w5 = (b4 + 4b5)

w6 =-b 5

The values of I for other values of m can be easily calculated.P

This approximation for I proved sufficiently accurate for the
p

calculations carried out. I can, of course, be more accurately deter-
P

mined by numerical integration for each trial value of b0 , b2 2 ...

b during iterative solving of the nonlinear algebraic equations (39),m

(40), (41), and (42).

The stresses are determined from the strains and temperature from

E 1 E I E2 e 2

(43)
2 =E 2 e 1 + E1  2

and the stress e.t any time

iwt aCsW i t(4Re(a(x,t)) - Re(a et) * 01 cos Wt - 02 sin wt (4)

These equations follow immediately from Eq. (27). E1 and E2 are
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determined as functions of temperature from Eqs. (34) and (35).

Non-dimensional stresses s1  and s are defined as

sl', 2 2

and at x=

so 0 0

where

X [2K W P(T0  Tl)1/ 2  (45)

5. Results and Conclusions

Numerical calculations have been carried out for the following data

for a Lockheed solid propellant [9] whose mechanical and thermal proper-

ties are qualitatively typical of many viscoelastic solids

cI = 4.61 x 10" 11(psi)- (sec)o (OF)- Y

c2= 1.62 x 10'l (psi)- (sec) (°F)"Y

0--0.214 y= 3.21

-1.0" = 65°F

T =- 125°F 3 in.
A = 1.023 x 10 psi-sec2

2Kp(T 0 - T1) d 8.08 x 10-4 psi2-sec

W 104 rad/sec. so0  0.5 (a0  1.42 psi)

In [9] should read 1.0 instead of 0.1. .
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The nonlinear algebraic equations (39), (40), (41), and (42) were

solved numerically in a computer for different values of n and m "

The subroutine used is given in [14]. The method is a compromise be-

tween the Newton-Raphson algorithm and the method of steepest descent.

Figures 2, 3 and 4 show the resulting T, sI and s distribu-.

tions for different values of n and m and also the solution from

[9] obtained by the method of finite differences. The solution for

n - 1 , m - 0 is crude but we see that the convergence to the true

solution is very rapid. Figures 5, 6, and 7 show the approximate solu-

tions for n = 4 , m = 3 . Even with these relatively small number of

terms, the stress solutions are practically identical to those given in

[9], while the temperature solution is well witbin engineering accuracy.

The algorithm for solving the nonlinear algebraic equations converges

very quickly and more accurate solutions can be obtained, if desired,

by taking larger values of n and m

As mentioned earlier, if the steady state values of stress and f

temperature are of interest (this is often the case in design), the method

used here, which yields the steady state directly, is superior to that

used by Huang and Lee in [9] where the complete time histories of the

above mentioned quantities were determined. In some cases in [9] the

authors obtained the steady state solutions by numerically integrating 4

forward in time till the variables of interest did not change significant-
A

ly. In other cases, they did not integrate upto the steady state but j
stopped at some large value of time.

The results obtained are thus very satisfactory as long as s1 and

s are sufficiently smooth functions so that approximation by a series

nf polynomials is efficient. The nature of the spatial distribution of

4



-29-

stress depends upon the particular choice of frequency and driving

stress. For a given driving frequency, larger driving stresses lead

to larger temperatures since more mechanical energy is dissipated as

heat. This causes the material to become softer, so that lower stress

wave velocities and therefore lower wave lengths result. If sl and

s are rapidly oscillating functions of q , the polynomial series is

no longer efficient since a larger number of terms must be taken to get

the required accuracy and the lack of orthogonality of the polynomials

gives rise to Hilbert matrices. This results in convergence problems

for the algorithm used to solve the algebraic equations. The varia-

tional principles, however, should work fine for these cases, if, for

example, trigonometric functions are chosen instead.

To sum up, the variational approach seems comparable to the finite

difference approach for waves in one dimension and ought to be more

efficient in two or three dimensions where the differential equa-

tions are partial and finite difference simulation becomes much more

complicated. Solving for displacements instead of stresses has the

advantage of automatic satisfaction of compatibility conditions and

Mitchell's equations for multiply connected regions. The choice of

coordinate functions is very impcrtant and must be made carefully.
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Figure 1. Boundary conditions for the one-dimensional problem.
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